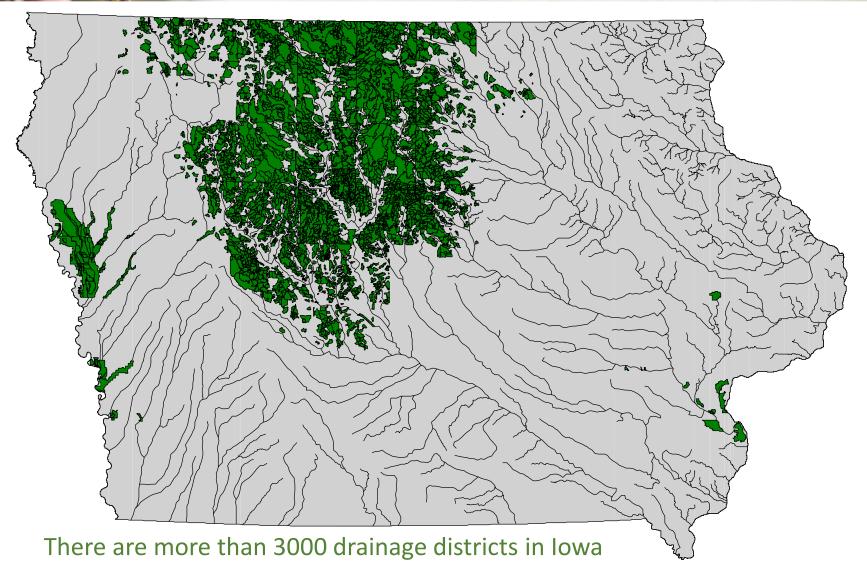
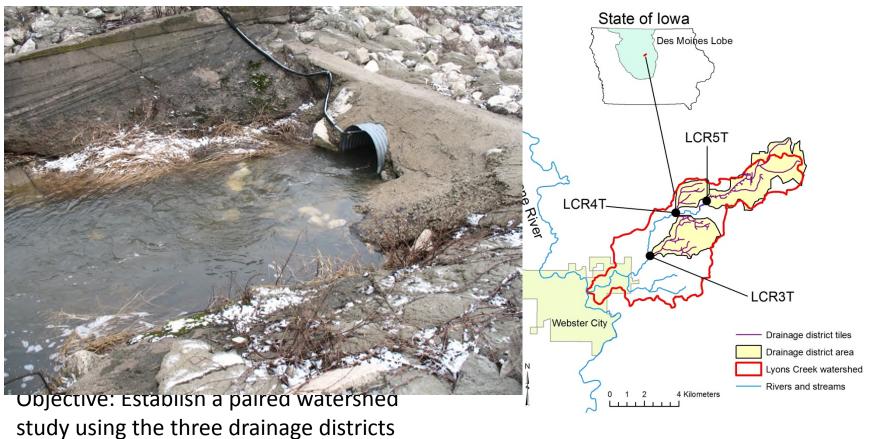

Comparing Nitrate Concentrations in Three Iowa Drainage Districts.

Anthony Seeman
Iowa Soybean Association

Iowa Soybean Association Environmental Programs and Services

- Advance <u>agricultural leadership</u> for environmental quality by <u>developing</u>, <u>applying</u>, <u>and promoting programs that</u> assist producers to <u>perform</u> agronomically and economically
- Develops policies and programs that help farmers expand profit opportunities while promoting environmentally sensitive production using the soybean checkoff and other resources.
- The Association is governed by an elected volunteer board of 21 farmers.
- Largest State-based row crop commodity association in U.S. serving 45,000 lowa soybean farmers.


Subsurface Drainage

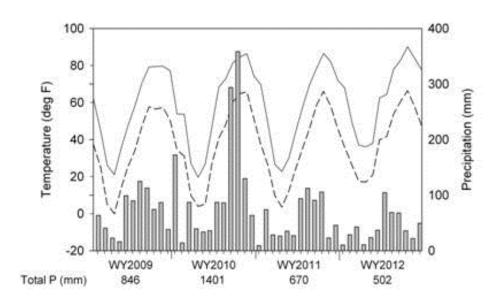


Study Area: Lyons Creek

42 km² watershed in

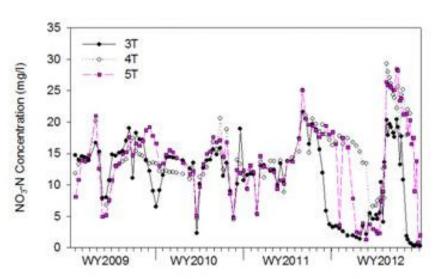
Basin Properties

Property	LCR3T	LCR4T	LCR5T	
Slope (%)	4.05 ± 2.98	4.18 ± 3.04	4.24 ± 3.11	
Slope range (%)	0-91.5	0-89.9	0-79.7	
Depressional areas (% of basin	3.65	5.51	7.67	
with DEM fill)				
Major Soil Types (% of basin):				
Boden	21.08	21.53	19.45	
Ottosen	24.94	16.57	16.13	
Storden	0.42	1.08	0.10	
Kossuth	28.49	39.47	42.84	
Brown	22.87	4.67	9.23	
Harps	0.09	6.40	5.46	
Okoboji	1.46	9.74	6.31	
Average Soil Texture (%):				
Sand	21.9	19.9	19.4	
Silt	40.9	44.6	44.6	
Clay	37.2	35.5	36.0	
Organic matter (%)	5.62	5.89	5.85	
Soils needing tile drainage to	77.6	77.4	80.0	
farm [†] (% of basin)				
Land receiving manure	89.2	0.8	51.2	
application [‡] (% of basin)				
Row crop land cover (% of basin)	93.1	92.1	90.4	
Mulch tillage (% of row crop land)	88.2	89.3	98.1	

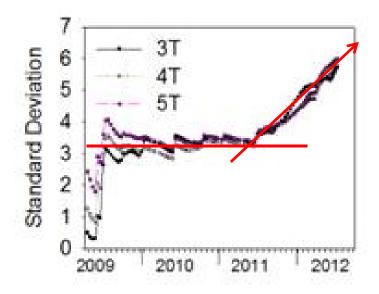


Water Monitoring 2009-2012

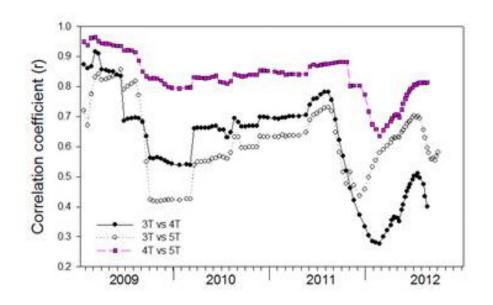
- Grab samples collected every two weeks at drainage district outlets and analyzed for nitrate-nitrogen (NO₃-N)
- Climate variability during the monitoring period



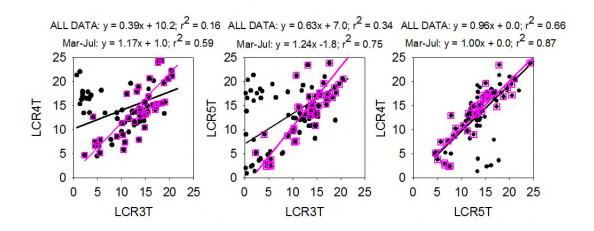
NO₃-N Concentrations


Statistics	LCR-3T	LCR-4T	LCR-5T			
mean	11.1	14.7	14.0			
min	0.0	4.4	0.8			
max	21.6	29.3	28.4			
March-July period						
mean	14.1	15.7	15.7			
min	2.3	4.6	2.3			
max	21.6	29.3	28.4			

Intrinsic variability


Standard deviation increased with additional samples collected in 2011 and 2012

Cumulative correlation


	3T-4T	3T-5T	4T-5T
Total period	0.399	0.597	0.814
Mar-Jul	0.769	0.865	0.934

Linear regression

Relation between sample pairs was improved during March to July period

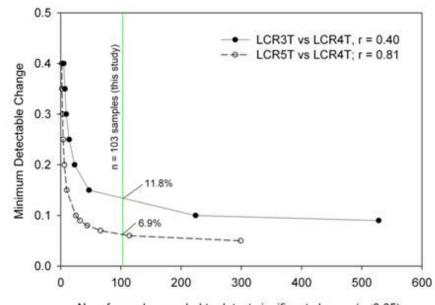
MDC in NO₃-N Concentrations

High MDC = many years to detect 10% change

Control	Treatment	n	MDC (%)	# of samples needed to see 10% change	# of years to monitor (26 samples/yr)		n	MDC (%)	# of samples needed to see 10% change	# of years to monitor (13 samples/yr)
LCR3T	LCR4T	103	11.8	224	8.6	NO ₃ -N	50	12.4	150	11.5
LCR3T	LCR5T	109	12.9	474	18.2	(subset)	50	10.5	61	4.7
LCR4T	LCR5T	103	7.0	35	1.3		50	6.7	16	1.2
LCR4T	LCR3T	103	9.6	90	3.5		50	8.3	28	2.1
LCR5T	LCR3T	109	8.7	67	2.6		50	6.5	15	1.2
LCR5T	LCR4T	103	6.9	25	1.0		50	6.2	13	1.0

Lowest MDC value

MDC values are lower with fewer samples if Mar-Jul period used



 Lack of correlation affects the ability to detect changes

Correlation of 0.4 = MDC of 11.8%

Correlation of 0.81 = MDC of 6.9%

No. of samples needed to detect significant change (p<0.05) in nitrate concentration

